How to Take Close-Ups in 3D

By George Themelis OSPS February 2021

• Why?

The Challenges

- 2D (how to achieve the magnification)
- 3D (how to control the deviation)
- Equipment & Techniques

What is a close-up?

Traditional Distant 3D photography:

Normal photography when the near object is at 2.1m (7 ft) from the camera. M \sim 1/60

Traditional Definition of Macro: Anything with magnification of 1:1 or larger (or object size 24mm in height or smaller)

Close-up Challenge

2D	3D		
<u>Magnification</u> FL / Distance	<u>Deviation</u> Base / Distance		
Get closer to increase the magnification	Reduce stereo base to keep deviation small		

Summary of Equipment for Close-Up

Method		В		X
1. One camera and shift	6 ST	0-inf	X	x
2. 3D camera		50-75mm	x	
3. Close-up 3D camera		20-40mm	x	х
4. 3D Camera + attachment		~30mm	x	х
5. 2D camera & 3D lens		10-15mm	х	x
6. Two 2D cameras & mirror (Macrobox)		0-50mm	x	x
7. Two 2D cameras + long lenses		100-150mm	x	х

1. One camera & shift

Easiest & least expensive (phone, even a stereo camera!)

<u>How to do it</u>: **Picture 1** \rightarrow **shift** \rightarrow **Picture 2**

Advantage: Flexible stereo base

Drawback: For stationary objects only

Recommendation for Stereo Base:

~ 1/20 x Distance to Nearest Object

<u>Slide Bar or free held?</u> With SPM, free-hand is OK <u>Converge or not?</u> It is OK to converge to save image width <u>Flash</u>? Do not shift flash if shadows are formed

Depth Ratio (B/I)

Stereo Base over Distance

- Both the Stereo Base (B) and distance (I) are very important in 3D photography, but it is the ratio of B/I that determines the amount of depth in the picture
- For distant 3D photography traditionally a **ratio of 1/30** is recommended.
- Through trial and error, I have found that a depth ratio of about 1/20 works well for close-ups

Iphone cha-cha

Fuji W3 in Advanced 3D mode

2. Standard 3D Camera

A standard 3D camera (B ~ 60-75mm) can be used for close-ups

if the background is blocked

Instead of coming closer, it is better to:

Stay back and zoom-in

The Background is the ENEMY of close-ups

How to control/eliminate the background:

- Use a physical barrier
- Use a featureless background
- Throw it out of focus
- Use strong flash (darkens the background)
- Photoshop to the rescue

3. Close-up 3D camera

Panasonic Lumix 3D1

Horseman 3D

Variety of 3D video digital cameras and phones, etc.

B = 20 - 30 mm

Macro Realist

Nimslo with close-up lenses

Panasonic Lumix 3D1

<u>Question</u>: Given the distance of the lenses B, how close can you get to your subject for a good close-up?

<u>Answer</u>: I ~ 20B

Panasonic: B=30mm, I ~ 600mm (24 inches, 2 ft)

This is approximately the distance of the extended hands

Lumix 3D1

Carlor D

Selfie w/ Lumix 3D1 g gen shan 13 C

D ~ 1/6

Selfie with the Fuji W3

Lumix 3D1 inside inexpensive underwater case

4. 3D Camera & Attachment

• Use mirrors or prisms

 Redirect light & effectively reduce the spacing of the lenses

Cyclopital 3D attachment for the Fuji 3D camera

RBT macro attachment for RBT cameras

Cyclopital 3D & Fuji W3 (zoomed)

RBT macro by Dale Yingst

No. Children West

MAR MOR

D ~ 1/40

5. 2D camera & 3D Lens

One camera lens with two lenses, records side-by-side stereo images that share the same film / sensor area

Kindar/Hyponar Lens

Panasonic 3D Lens

Loreo 3D Macro Lens

https://www.dewijs-3d.com/

Custom lens by Oktay Akdeniz

Panasonic 3D Lens

Micro 4/3 mount lens

Produces a 3d (MPO) file in certain (all recent) micro 4/3 cameras by Panasonic and Olympus

Two lenses, 10mm apart

- 12.5mm FL, f12 fixed aperture, fixed focus (Range: 0.6m-INF, estimated focus at 0.9m)
- Not good for general 3D photography (D = B/I = 1/90, extremely weak depth)
- Good for macros
 but needs to be modified to focus closer

Panasonic 3D Lens Modification

Modifications to focus closer (increase magnification)

Panasonic 3D Lens & CU lenses

How to Attach: Velcro Special attachment

Strength of CU lens: (+1, +2, +4)

Diopter = 1000mm/FL

<u>Achromatic CU lenses</u> (+3, +5, +10) Recommended for anything higher than +1

1mm ext (D = 1/15)

512

6. Two cameras & mirror

Macrobox for Canon SDM cameras—Features:

- Adjustable stereo base from 0mm to 50mm
- Filter threads in cover allows to use filters
- High-quality half mirror w/ anti reflex coating
- Made out of lightweight but stable plastic
- Cost ~ 450 Euros

http://www.digi-dat.de/

Macrobox & Flash - remotely triggere

7. Twin cameras & Long lenses

Panasonic bottom-to-bottom w/ Olympus lenses 75mm lenses

Samsung side-by-side w/ 500mm mirror lenses

Panasonic TZ80 (24-720mm) side-by-side

Panasonic FZ2500 (24-480mm) bottom to bottom (left) and top-to-top (right)

Canon 6D with100-400mm lenses top-to-top

Issues when using Twin Cameras w/Long FL Lenses Alignment - Focus - Synch

Vertical Alignment

Horizontal Alignment

If the cameras are pointed parallel, there will be partial **Image Loss** (= M x B) **The lenses must converge!**

Different Camera Mounting Configurations

1. Horizontal (side-by-side)

- Works ok for smaller cameras
- Flexible stereo base for hypers
- Not easy to use w/ large cameras on the field

2. Vertical

- Portable can be held with a grip or monopod
- Easier Vertical Alignment
- Easy to convergence
- Smaller stereo base
- Top-to-top: Use VF for 3D viewing
- Vertical orientation not best for 3D

Jasper Vertical Mount

Twin Sony RX10

Panasonic FZ2500

Distance ~ 2m (**D ~ 1/15**)

Summary of Equipment for Close-Up

3. Pair of 2D cameras

As is w/normal lenses (if B is small) Mirror/prisms (Macrobox, etc.)

Similarity Principle

You can take a close-up with: Normal/wide lenses by getting closer (I, II) Longer lenses from a longer distance (III)

Pictures that have:

- Same magnification (M = F/I)
- Same depth ratio (D = B/I)

Look surprisingly similar *

if the background is blocked

if the background is blocked if the background is blocked if the background is blocked if the background is blocked if the background is blocked If the background is blocked

* **Similar** = same size, same stereoscopic deviation but different perspective (ratio of size of near to far object)

- Close-ups are very effective in 3D
- 2D Challenge: Achieve the magnification
- 3D Challenge: Control the deviation
- Recommendation: Stereo Base / Distance ~ 1/20
 <u>Equipment</u>:
- For starters use a single camera or a stereo camera (stay back and zoom in)
- The Panasonic 3D1 (B=30mm) is good close-up stereo camera
- The **Panasonic 3D lens** (B=10mm) is a good way to experiment with close ups.